“Machine Learning is defined as the study of computer programs that leverage algorithms and statistical models to learn through inference and patterns without being explicitly programed. Machine Learning field has undergone significant developments in the last decade.”
Machine Learning is a system that can learn from example through self-improvement and without being explicitly coded by programmer. The breakthrough comes with the idea that a machine can singularly learn from the data (i.e., example) to produce accurate results.
Machine learning combines data with statistical tools to predict an output. This output is then used by corporate to makes actionable insights. Machine learning is closely related to data mining and Bayesian predictive modeling. The machine receives data as input, use an algorithm to formulate answers.
A typical machine learning tasks are to provide a recommendation. For those who have a Netflix account, all recommendations of movies or series are based on the user's historical data. Tech companies are using unsupervised learning to improve the user experience with personalizing recommendation.
Machine learning is also used for a variety of task like fraud detection, predictive maintenance, portfolio optimization, automatize task and so on.
In this basic tutorial, you will learn-
The core objective of machine learning is the learning and inference. First of all, the machine learns through the discovery of patterns. This discovery is made thanks to the data. One crucial part of the data scientist is to choose carefully which data to provide to the machine. The list of attributes used to solve a problem is called a feature vector. You can think of a feature vector as a subset of data that is used to tackle a problem.
The machine uses some fancy algorithms to simplify the reality and transform this discovery into a model. Therefore, the learning stage is used to describe the data and summarize it into a model.
For instance, the machine is trying to understand the relationship between the wage of an individual and the likelihood to go to a fancy restaurant. It turns out the machine finds a positive relationship between wage and going to a high-end restaurant: This is the model
The life of Machine Learning programs is straightforward and can be summarized in the following points:
As with any method, there are different ways to train machine learning algorithms, each with their own advantages and disadvantages. To understand the pros and cons of each type of machine learning, we must first look at what kind of data they ingest. In ML, there are two kinds of data — labeled data and unlabeled data.
Labeled data has both the input and output parameters in a completely machine-readable pattern, but requires a lot of human labor to label the data, to begin with. Unlabeled data only has one or none of the parameters in a machine-readable form. This negates the need for human labor but requires more complex solutions.
There are also some types of machine learning algorithms that are used in very specific use-cases, but three main methods are used today.
Machine Learning is a system that can learn from example through self-improvement and without being explicitly coded by programmer. The breakthrough comes with the idea that a machine can singularly learn from the data (i.e., example) to produce accurate results.
Machine learning combines data with statistical tools to predict an output. This output is then used by corporate to makes actionable insights. Machine learning is closely related to data mining and Bayesian predictive modeling. The machine receives data as input, use an algorithm to formulate answers.
A typical machine learning tasks are to provide a recommendation. For those who have a Netflix account, all recommendations of movies or series are based on the user's historical data. Tech companies are using unsupervised learning to improve the user experience with personalizing recommendation.
Machine learning is also used for a variety of task like fraud detection, predictive maintenance, portfolio optimization, automatize task and so on.
In this basic tutorial, you will learn-
- What is Machine Learning ?
- How does machine learning work ?
- Types of Machine learning.
- Machine learning Algorithms and where they are used ?
- How to choose Machine Learning Algorithm
- Challenges and Limitations of Machine learning
- Application of Machine learning
- Why machine learning is important ?
How does Machine learning work?
Machine learning is the brain where all the learning takes place. The way the machine learns is similar to the human being. Humans learn from experience. The more we know, the more easily we can predict. By analogy, when we face an unknown situation, the likelihood of success is lower than the known situation. Machines are trained the same. To make an accurate prediction, the machine sees an example. When we give the machine a similar example, it can figure out the outcome. However, like a human, if its feed a previously unseen example, the machine has difficulties to predict.The core objective of machine learning is the learning and inference. First of all, the machine learns through the discovery of patterns. This discovery is made thanks to the data. One crucial part of the data scientist is to choose carefully which data to provide to the machine. The list of attributes used to solve a problem is called a feature vector. You can think of a feature vector as a subset of data that is used to tackle a problem.
The machine uses some fancy algorithms to simplify the reality and transform this discovery into a model. Therefore, the learning stage is used to describe the data and summarize it into a model.
For instance, the machine is trying to understand the relationship between the wage of an individual and the likelihood to go to a fancy restaurant. It turns out the machine finds a positive relationship between wage and going to a high-end restaurant: This is the model
Inferring
When the model is built, it is possible to test how powerful it is on never-seen-before data. The new data are transformed into a features vector, go through the model and give a prediction. This is all the beautiful part of machine learning. There is no need to update the rules or train again the model. You can use the model previously trained to make inference on new data.The life of Machine Learning programs is straightforward and can be summarized in the following points:
- Define a question
- Collect data
- Visualize data
- Train algorithm
- Test the Algorithm
- Collect feedback
- Refine the algorithm
- Loop 4-7 until the results are satisfying
- Use the model to make a prediction
Types of Machine Learning
Labeled data has both the input and output parameters in a completely machine-readable pattern, but requires a lot of human labor to label the data, to begin with. Unlabeled data only has one or none of the parameters in a machine-readable form. This negates the need for human labor but requires more complex solutions.
There are also some types of machine learning algorithms that are used in very specific use-cases, but three main methods are used today.
Supervised Learning
Supervised learning is one of the most basic types of machine learning. In this type, the machine learning algorithm is trained on labeled data. Even though the data needs to be labeled accurately for this method to work, supervised learning is extremely powerful when used in the right circumstances.
In supervised learning, the ML algorithm is given a small training dataset to work with. This training dataset is a smaller part of the bigger dataset and serves to give the algorithm a basic idea of the problem, solution, and data points to be dealt with. The training dataset is also very similar to the final dataset in its characteristics and provides the algorithm with the labeled parameters required for the problem.
The algorithm then finds relationships between the parameters given, essentially establishing a cause and effect relationship between the variables in the dataset. At the end of the training, the algorithm has an idea of how the data works and the relationship between the input and the output.
This solution is then deployed for use with the final dataset, which it learns from in the same way as the training dataset. This means that supervised machine learning algorithms will continue to improve even after being deployed, discovering new patterns and relationships as it trains itself on new data.
In supervised learning, the labels allow the algorithm to find the exact nature of the relationship between any two data points. However, unsupervised learning does not have labels to work off of, resulting in the creation of hidden structures. Relationships between data points are perceived by the algorithm in an abstract manner, with no input required from human beings.
The creation of these hidden structures is what makes unsupervised learning algorithms versatile. Instead of a defined and set problem statement, unsupervised learning algorithms can adapt to the data by dynamically changing hidden structures. This offers more post-deployment development than supervised learning algorithms.
Based on the psychological concept of conditioning, reinforcement learning works by putting the algorithm in a work environment with an interpreter and a reward system. In every iteration of the algorithm, the output result is given to the interpreter, which decides whether the outcome is favorable or not.
In case of the program finding the correct solution, the interpreter reinforces the solution by providing a reward to the algorithm. If the outcome is not favorable, the algorithm is forced to reiterate until it finds a better result. In most cases, the reward system is directly tied to the effectiveness of the result.
In typical reinforcement learning use-cases, such as finding the shortest route between two points on a map, the solution is not an absolute value. Instead, it takes on a score of effectiveness, expressed in a percentage value. The higher this percentage value is, the more reward is given to the algorithm. Thus, the program is trained to give the best possible solution for the best possible reward.
You can use supervised learning when the output data is known. The algorithm will predict new data.
There are two categories of supervised learning:
The label can be of two or more classes. The above example has only two classes, but if a classifier needs to predict object, it has dozens of classes (e.g., glass, table, shoes, etc. each object represents a class)
In unsupervised learning, an algorithm explores input data without being given an explicit output variable (e.g., explores customer demographic data to identify patterns)
You can use it when you do not know how to classify the data, and you want the algorithm to find patterns and classify the data for you
In the example below, the task is to predict the type of flower among the three varieties. The predictions are based on the length and the width of the petal. The picture depicts the results of ten different algorithms. The picture on the top left is the dataset. The data is classified into three categories: red, light blue and dark blue. There are some groupings. For instance, from the second image, everything in the upper left belongs to the red category, in the middle part, there is a mixture of uncertainty and light blue while the bottom corresponds to the dark category. The other images show different algorithms and how they try to classified the data.
Machine learning gives terrific results for visual pattern recognition, opening up many potential applications in physical inspection and maintenance across the entire supply chain network.
Unsupervised learning can quickly search for comparable patterns in the diverse dataset. In turn, the machine can perform quality inspection throughout the logistics hub, shipment with damage and wear.
For instance, IBM's Watson platform can determine shipping container damage. Watson combines visual and systems-based data to track, report and make recommendations in real-time.
In past year stock manager relies extensively on the primary method to evaluate and forecast the inventory. When combining big data and machine learning, better forecasting techniques have been implemented (an improvement of 20 to 30 % over traditional forecasting tools). In term of sales, it means an increase of 2 to 3 % due to the potential reduction in inventory costs.
Example of Machine Learning Google Car
For example, everybody knows the Google car. The car is full of lasers on the roof which are telling it where it is regarding the surrounding area. It has radar in the front, which is informing the car of the speed and motion of all the cars around it. It uses all of that data to figure out not only how to drive the car but also to figure out and predict what potential drivers around the car are going to do. What's impressive is that the car is processing almost a gigabyte a second of data.
Take the following example; a retail agent can estimate the price of a house based on his own experience and his knowledge of the market.
A machine can be trained to translate the knowledge of an expert into features. The features are all the characteristics of a house, neighborhood, economic environment, etc. that make the price difference. For the expert, it took him probably some years to master the art of estimate the price of a house. His expertise is getting better and better after each sale.
For the machine, it takes millions of data, (i.e., example) to master this art. At the very beginning of its learning, the machine makes a mistake, somehow like the junior salesman. Once the machine sees all the example, it got enough knowledge to make its estimation. At the same time, with incredible accuracy. The machine is also able to adjust its mistake accordingly.
Most of the big company have understood the value of machine learning and holding data. McKinsey have estimated that the value of analytics ranges from $9.5 trillion to $15.4 trillion while $5 to 7 trillion can be attributed to the most advanced AI techniques.
Machine learning is supposed to overcome this issue. The machine learns how the input and output data are correlated and it writes a rule. The programmers do not need to write new rules each time there is new data. The algorithms adapt in response to new data and experiences to improve efficacy over time.
In supervised learning, the ML algorithm is given a small training dataset to work with. This training dataset is a smaller part of the bigger dataset and serves to give the algorithm a basic idea of the problem, solution, and data points to be dealt with. The training dataset is also very similar to the final dataset in its characteristics and provides the algorithm with the labeled parameters required for the problem.
The algorithm then finds relationships between the parameters given, essentially establishing a cause and effect relationship between the variables in the dataset. At the end of the training, the algorithm has an idea of how the data works and the relationship between the input and the output.
This solution is then deployed for use with the final dataset, which it learns from in the same way as the training dataset. This means that supervised machine learning algorithms will continue to improve even after being deployed, discovering new patterns and relationships as it trains itself on new data.
Unsupervised Learning
Unsupervised machine learning holds the advantage of being able to work with unlabeled data. This means that human labor is not required to make the dataset machine-readable, allowing much larger datasets to be worked on by the program.In supervised learning, the labels allow the algorithm to find the exact nature of the relationship between any two data points. However, unsupervised learning does not have labels to work off of, resulting in the creation of hidden structures. Relationships between data points are perceived by the algorithm in an abstract manner, with no input required from human beings.
The creation of these hidden structures is what makes unsupervised learning algorithms versatile. Instead of a defined and set problem statement, unsupervised learning algorithms can adapt to the data by dynamically changing hidden structures. This offers more post-deployment development than supervised learning algorithms.
Reinforcement Learning
Reinforcement learning directly takes inspiration from how human beings learn from data in their lives. It features an algorithm that improves upon itself and learns from new situations using a trial-and-error method. Favorable outputs are encouraged or ‘reinforced’, and non-favorable outputs are discouraged or ‘punished’.Based on the psychological concept of conditioning, reinforcement learning works by putting the algorithm in a work environment with an interpreter and a reward system. In every iteration of the algorithm, the output result is given to the interpreter, which decides whether the outcome is favorable or not.
In case of the program finding the correct solution, the interpreter reinforces the solution by providing a reward to the algorithm. If the outcome is not favorable, the algorithm is forced to reiterate until it finds a better result. In most cases, the reward system is directly tied to the effectiveness of the result.
In typical reinforcement learning use-cases, such as finding the shortest route between two points on a map, the solution is not an absolute value. Instead, it takes on a score of effectiveness, expressed in a percentage value. The higher this percentage value is, the more reward is given to the algorithm. Thus, the program is trained to give the best possible solution for the best possible reward.
Machine learning Algorithms..
Machine learning can be grouped into two broad learning tasks: Supervised and Unsupervised. There are many other algorithmsSupervised learning
An algorithm uses training data and feedback from humans to learn the relationship of given inputs to a given output. For instance, a practitioner can use marketing expense and weather forecast as input data to predict the sales of cans.You can use supervised learning when the output data is known. The algorithm will predict new data.
There are two categories of supervised learning:
- Classification task
- Regression task
Classification
Imagine you want to predict the gender of a customer for a commercial. You will start gathering data on the height, weight, job, salary, purchasing basket, etc. from your customer database. You know the gender of each of your customer, it can only be male or female. The objective of the classifier will be to assign a probability of being a male or a female (i.e., the label) based on the information (i.e., features you have collected). When the model learned how to recognize male or female, you can use new data to make a prediction. For instance, you just got new information from an unknown customer, and you want to know if it is a male or female. If the classifier predicts male = 70%, it means the algorithm is sure at 70% that this customer is a male, and 30% it is a female.The label can be of two or more classes. The above example has only two classes, but if a classifier needs to predict object, it has dozens of classes (e.g., glass, table, shoes, etc. each object represents a class)
Regression
When the output is a continuous value, the task is a regression. For instance, a financial analyst may need to forecast the value of a stock based on a range of feature like equity, previous stock performances, macroeconomics index. The system will be trained to estimate the price of the stocks with the lowest possible error.Unsupervised learning |
You can use it when you do not know how to classify the data, and you want the algorithm to find patterns and classify the data for you
How to choose Machine Learning Algorithm ?
There are plenty of machine learning algorithms. The choice of the algorithm is based on the objective.In the example below, the task is to predict the type of flower among the three varieties. The predictions are based on the length and the width of the petal. The picture depicts the results of ten different algorithms. The picture on the top left is the dataset. The data is classified into three categories: red, light blue and dark blue. There are some groupings. For instance, from the second image, everything in the upper left belongs to the red category, in the middle part, there is a mixture of uncertainty and light blue while the bottom corresponds to the dark category. The other images show different algorithms and how they try to classified the data.
Challenges and Limitations of Machine learning
The primary challenge of machine learning is the lack of data or the diversity in the dataset. A machine cannot learn if there is no data available. Besides, a dataset with a lack of diversity gives the machine a hard time. A machine needs to have heterogeneity to learn meaningful insight. It is rare that an algorithm can extract information when there are no or few variations. It is recommended to have at least 20 observations per group to help the machine learn. This constraint leads to poor evaluation and prediction.Application of Machine learning
Augmentation:- Machine learning, which assists humans with their day-to-day tasks, personally or commercially without having complete control of the output. Such machine learning is used in different ways such as Virtual Assistant, Data analysis, software solutions. The primary user is to reduce errors due to human bias.
- Machine learning, which works entirely autonomously in any field without the need for any human intervention. For example, robots performing the essential process steps in manufacturing plants.
- Machine learning is growing in popularity in the finance industry. Banks are mainly using ML to find patterns inside the data but also to prevent fraud.
- The government makes use of ML to manage public safety and utilities. Take the example of China with the massive face recognition. The government uses Artificial intelligence to prevent jaywalker.
- Healthcare was one of the first industry to use machine learning with image detection.
- Broad use of AI is done in marketing thanks to abundant access to data. Before the age of mass data, researchers develop advanced mathematical tools like Bayesian analysis to estimate the value of a customer. With the boom of data, marketing department relies on AI to optimize the customer relationship and marketing campaign.
Machine learning gives terrific results for visual pattern recognition, opening up many potential applications in physical inspection and maintenance across the entire supply chain network.
Unsupervised learning can quickly search for comparable patterns in the diverse dataset. In turn, the machine can perform quality inspection throughout the logistics hub, shipment with damage and wear.
For instance, IBM's Watson platform can determine shipping container damage. Watson combines visual and systems-based data to track, report and make recommendations in real-time.
In past year stock manager relies extensively on the primary method to evaluate and forecast the inventory. When combining big data and machine learning, better forecasting techniques have been implemented (an improvement of 20 to 30 % over traditional forecasting tools). In term of sales, it means an increase of 2 to 3 % due to the potential reduction in inventory costs.
Example of Machine Learning Google Car
For example, everybody knows the Google car. The car is full of lasers on the roof which are telling it where it is regarding the surrounding area. It has radar in the front, which is informing the car of the speed and motion of all the cars around it. It uses all of that data to figure out not only how to drive the car but also to figure out and predict what potential drivers around the car are going to do. What's impressive is that the car is processing almost a gigabyte a second of data.
Why is Machine Learning important?
Machine learning is the best tool so far to analyze, understand and identify a pattern in the data. One of the main ideas behind machine learning is that the computer can be trained to automate tasks that would be exhaustive or impossible for a human being. The clear breach from the traditional analysis is that machine learning can take decisions with minimal human intervention.Take the following example; a retail agent can estimate the price of a house based on his own experience and his knowledge of the market.
A machine can be trained to translate the knowledge of an expert into features. The features are all the characteristics of a house, neighborhood, economic environment, etc. that make the price difference. For the expert, it took him probably some years to master the art of estimate the price of a house. His expertise is getting better and better after each sale.
For the machine, it takes millions of data, (i.e., example) to master this art. At the very beginning of its learning, the machine makes a mistake, somehow like the junior salesman. Once the machine sees all the example, it got enough knowledge to make its estimation. At the same time, with incredible accuracy. The machine is also able to adjust its mistake accordingly.
Most of the big company have understood the value of machine learning and holding data. McKinsey have estimated that the value of analytics ranges from $9.5 trillion to $15.4 trillion while $5 to 7 trillion can be attributed to the most advanced AI techniques.
Machine Learning vs. Traditional Programming
Traditional programming differs significantly from machine learning. In traditional programming, a programmer code all the rules in consultation with an expert in the industry for which software is being developed. Each rule is based on a logical foundation; the machine will execute an output following the logical statement. When the system grows complex, more rules need to be written. It can quickly become unsustainable to maintain.Machine learning is supposed to overcome this issue. The machine learns how the input and output data are correlated and it writes a rule. The programmers do not need to write new rules each time there is new data. The algorithms adapt in response to new data and experiences to improve efficacy over time.
0 Comments